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1
PROCESSING DEVICE AND METHOD OF
COMPRESSING IMAGES

CROSS REFERENCE TO RELATED
APPLICATION(S)

The present application is related to co-pending U.S. patent
application Ser. No. 14/553,173, entitled “Method and Appa-
ratus for Encoding Image Data,” filed on Nov. 25, 2014, the
entirety of which is herein incorporated by reference.

FIELD OF THE INVENTION

This invention relates to a processing device and to a
method of compressing images, in particular of compressing
images using texture mapping. More particularly, the com-
pressed images are decodable making use of functionalities
of graphics processing subsystems having vertex and texture
shaders.

BACKGROUND OF THE INVENTION

Image compression is widely used to minimize the space
required to store images. Whereas the known image compres-
sion methodologies are optimized in view of storage require-
ments resources required to uncompress/decode compressed
images are considered of marginal concern. Image compres-
sion methodologies having high compression ratios are typi-
cally processing and bandwidth demanding. In particular pro-
cessing systems with limited capabilities which would benefit
from the reduced storage space demand due to high compres-
sion ratios are often not capable to provide the required pro-
cessing and bandwidth capabilities.

In the state of the art, approaches are known to leverage
specific or dedicated hardware solutions for uncompressing/
decoding compressed images. For instance, the use of
OpenCL kernels applicable with a large number of today’s
graphics processing subsystem is suggested; cf. for instance
“http://developer.amd.com/resources/documentation-ar-
ticles/articles-whitepapers/jpeg-decoding-with-run-length-
encoding-a-cpu-and-gpu-approach!”. This approach reduces
the requirement of processing resources provided by a gen-
eral purpose processor in that functionalities of a graphics
processing subsystem are employed but does still involves
high bandwidth consumption between memory and graphics
processing subsystem.

The consideration applies to dedicated hardware solutions,
which also reduces the requirement of processing resources
provided by a general purpose processor but disregard the
bandwidth consumption due to data transfers from and to
memory.

SUMMARY OF THE INVENTION

The present invention provides a processing device and a
method as described in the accompanying claims.

Specific embodiments of the invention are set forth in the
dependent claims.

These and other aspects of the invention will be apparent
from and elucidated with reference to the embodiments
described hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

Further details, aspects and embodiments of the invention
will be described, by way of example only, with reference to
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2

the drawings. Elements in the figures are illustrated for sim-
plicity and clarity and have not necessarily been drawn to
scale.

In the drawings,

FIG. 1 schematically illustrates a block diagram of a sys-
tem on chip (SoC) device that may be used to implement an
example of the present invention;

FIG. 2 schematically illustrates a block diagram of a gen-
eralized processing device that may be used to implement an
example of the present invention;

FIG. 3 schematically shows a block diagram of an exem-
plary graphics pipeline implemented in a graphics subsystem
of'a device capable of processing data; and

FIG. 4 schematically shows an exemplary flow diagram
illustrating the data flow and processing operations for dis-
playing a compressed image in accordance with the state of
the art;

FIG. 5 schematically shows an exemplary flow diagram
illustrating data flow and processing operations for display-
ing a compressed image encoded in accordance with an
example of the image encoding operation of the present appli-
cation;

FIG. 6 schematically shows a block diagram illustrating
partitioning of an image domain on the basis of geometric
primitives according to an example of the present application;

FIG. 7 schematically shows a block diagram of an encoder
applicable for implementing an image encoding operation
according to an example of the present application;

FIG. 8 schematically shows a flow chart of an example of
an image compressing encoding method according to an
example of the present application;

FIG. 9 schematically shows a block diagram further illus-
trating the image compressing encoding operation with
respect to FIGS. 6 and 8;

FIG. 10 schematically shows a flow diagram of examples
of'a merging operation in accordance with an example of the
present application;

FIG. 11 schematically shows a flow chart of an example of
a merging operation in accordance with an example of the
present application; and

FIG. 12 schematically shows a flow chart of an example of
animage compression decoding operation in accordance with
an example of the present application.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Aspects of the present disclosure are best understood from
the following detailed description when read with the accom-
panying figures. It is noted that, in accordance with the stan-
dard practice in the industry, various features are not drawn to
scale. In fact, the dimensions of the various features may be
arbitrarily increased or reduced for clarity of discussion.

It is understood that the following disclosure provides
many different embodiments, or examples, capable of imple-
menting different features. Specific examples of components
and arrangements are described below to simplify and thus
clarify the present disclosure. These are, of course, merely
examples and are not intended to be limiting. In many
instances, the features of one embodiment may be combined
with the features of other embodiments. In addition, the
present disclosure may repeat reference numerals and/or let-
ters in the various exemplary embodiments. This repetition is
for the purpose of simplicity and clarity and does not itself
dictate a relationship between the various embodiments and/
or configurations discussed.
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Referring now to FIG. 1, there is shown a simplified sche-
matic diagram of a multi-core system on chip 600 having
multiple processor cores 610, 620, 630, 640. As illustrated,
each of the processor cores 610, 620, 630, 640 is coupled to
one or more levels of cache memory, such as an L1 instruction
cache (I-Cache), L1 data cache (D-Cache), and/or L2 cache.
While the processor cores 610, 620, 630, 640 may be identi-
cally designed or homogenous, the multi-core SoC may also
include one or more cores having a different design. For
example, the depicted multi-core SoC 600 also includes an
accelerator 641 which may include one or more processor
cores for supporting hardware acceleration for DFT/iDFT
and FFT/iFFT algorithms and for CRC processing. Each
processor core is coupled across an interconnect bus 650 to
one or more memory controllers 661, which are coupled in
turn to one or more banks of system memory (not shown). The
interconnect bus 650 also couples the processor cores to a
Direct Memory Access (DMA) controller 642, network inter-
face 643, a high speed serial interface 644, and to other
hardware-implemented integrated peripherals 671 to 679.
The interconnect bus 650 may be a coherency fabric.

Each of the processor cores 610, 620, 630, 640 may be
configured to execute instructions and to process data accord-
ing to a particular instruction set architecture (ISA), such as
x86, PowerPC, SPARC, MIPS, and ARM, for example. Those
of ordinary skill in the art also understand the present inven-
tion is not limited to any particular manufacturer’s micropro-
cessor design. The processor core may be found in many
forms including, for example, any 32-bit or 64-bit micropro-
cessor manufactured by Freescale, Motorola, Intel, AMD,
Sun or IBM. However, any other suitable single or multiple
microprocessors, microcontrollers, or microcomputers may
be utilized. In the illustrated embodiment, each of the proces-
sor cores 610, 620, 630, 640 may be configured to operate
independently ofthe others, such that all cores may execute in
parallel. In some embodiments, each of cores may be config-
ured to execute multiple threads concurrently, where a given
thread may include a set of instructions that may execute
independently of instructions from another thread. Such a
core may also be referred to as a multithreaded (MT) core.
Thus, a single multi-core SoC 600 with four cores will be
capable of executing a multiple of four threads in this con-
figuration. However, it should be appreciated that the inven-
tion is not limited to four processor cores and that more or
fewer cores can be included. In addition, the term “core”
refers to any combination of hardware, software, and firm-
ware typically configured to provide a processing function-
ality with respect to information obtained from or provided to
associated circuitry and/or modules (e.g., one or more periph-
erals, as described below). Such cores include, for example,
digital signal processors (DSPs), central processing units
(CPUs), microprocessors, and the like. These cores are often
also referred to as masters, in that they often act as a bus
master with respect to any associated peripherals. Further-
more, the term multi-core (or multi-master) refers to any
combination of hardware, software, and firmware that that
includes two or more such cores (e.g., cores 610 and 620),
regardless of whether the individual cores are fabricated
monolithically (i.e., on the same chip) or separately. Thus, a
second core may be the same physical core as first core, but
has multiple modes of operation (e.g., a core may be virtual-
ized).

As depicted, each processor core (e.g., 610) may include a
first level (L.1) cache which includes a data cache (D-Cache)
and an instruction cache (I-Cache). In addition, a second level
of cache memory (L.2) may also be provided at each core,
though the [.2 cache memory can also be an external L2 cache

10

15

20

25

30

35

40

45

50

55

60

65

4

memory which is shared by one or more processor cores. The
processor core 610 executes instructions and processes data
under control of the operating system (OS) which may des-
ignate or select the processor core 610 as the control or master
node for controlling the workload distribution amongst the
processor cores 610, 620, 630, 640. Communication between
the cores 610, 620, 630, 640 may be over the interconnect bus
650 or over a crossbar switch and appropriate dual point to
point links according to, for example, a split-transaction bus
protocol such as the HyperTransport (HT) protocol (not
shown).

The processor cores 610, 620, 630, 640 and accelerator 641
are in communication with the interconnect bus 650 which
manages data flow between the cores and the memory. The
interconnect bus 650 may be configured to concurrently
accommodate a large number of independent accesses that
are processed on each clock cycle, and enables communica-
tion data requests from the processor cores 610, 620, 630, 640
to external system memory and/or an on-chip non-volatile
memory 662, as well as data responses therefrom. In selected
embodiments, the interconnect bus 650 may include logic
(such as multiplexers or a switch fabric, for example) that
allows any core to access any bank of memory, and that
conversely allows data to be returned from any memory bank
to any core. The interconnect bus 650 may also include logic
to queue data requests and/or responses, such that requests
and responses may not block other activity while waiting for
service. Additionally, the interconnect bus 650 may be con-
figured as a chip-level arbitration and switching system
(CLASS) to arbitrate conflicts that may occur when multiple
cores attempt to access a memory or vice versa.

The interconnect bus 650 is in communication with main
memory controller 661 to provide access to the optional SOC
internal memory 662 or main memory (not shown). Memory
controller 661 may be configured to manage the transfer of
data between the multi-core SoC 600 and system memory, for
example. In some embodiments, multiple instances of
memory controller 661 may be implemented, with each
instance configured to control a respective bank of system
memory. Memory controller 661 may be configured to inter-
face to any suitable type of system memory, such as Double
Data Rate or Double Data Rate 2 or Double Data Rate 3
Synchronous Dynamic Random Access Memory (DDR/
DDR2/DDR3 SDRAM), or Rambus DRAM (RDRAM), for
example. In some embodiments, memory controller 661 may
be configured to support interfacing to multiple different
types of system memory. In addition, the Direct Memory
Access (DMA) controller 642 may be provided which con-
trols the direct data transfers to and from system memory via
memory controller 661.

The interconnect bus 650 is in communication with storage
HUB 663 to provide access to mass storage (not shown). The
storage HUB 663 may be configured to manage the transfer of
data between the multi-core SoC 600 and mass storage units,
for example. The storage HUB 663 may further include one or
more interfaces specific for the technology used by the mass
storage units. Herein, the storage HUB 663 is exemplarily
illustrated to include a SD/eMMC Interface 664, which is
provided to allow for access to SD (Secure Data), MMC
(MultiMediaCard) cards (not shown) and/or eMMC (embed-
ded MultiMediaCard) (not shown). Both storage technolo-
gies are implemented on the basis of non-volatile flash
memory technology. In some embodiments, multiple
instances of storage HUB 663 and/or interfaces provided with
the storage HUB 663 may be implemented, with each
instance configured to control a respective bank of system
memory. Memory storage HUB 663 may be configured to
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interface to any suitable type of mass storage interfacing
standards including in particular flash memory storage stan-
dards (SD, MMC), SAS (Serial Attached SCSI), SATA (Se-
rial ATA) and the like.

The multi-core SoC 600 may comprise a dedicated graph-
ics sub-system 200. The graphics sub-system 200 may be
configured to manage the transfer of data between the multi-
core SoC 600 and graphics sub-system 200, for example,
through the interconnect bus 650. The graphics sub-system
200 may include one or more processor cores for supporting
hardware accelerated graphics generation. The graphics gen-
erated by the graphics sub-system 200 may be outputted to
one or more displays via any display interface such as LVDS,
HDMI, DVI and the like.

As will be appreciated, the multi-core SoC 600 may be
configured to receive data from sources other than system
memory. To this end, a network interface engine 643 may be
configured to provide a central interface for handling Ethernet
and SPI interfaces, thus oft-loading the tasks from the cores.
In addition, a high speed serial interface 644 may be config-
ured to support one or more serial RapidlO ports, a PCI-
Express Controller, and/or a serial Gigabit Media Indepen-
dent Interface (SGMII). In addition, one or more interfaces
670 may be provided which are configured to couple the cores
to external boot and/or service devices, such as /O interrupt
concentrators 671, UART device(s) 672, clock(s) 673,
timer(s) 674, reset 675, hardware semaphore(s) 676, virtual
interrupt(s) 677, Boot ROM 678, 12C interface 679, GPIO
ports, and/or other modules.

With continued reference to FIG. 2, processing device or
computing device 100 is schematically illustrated. The pro-
cessing device or computing device of FIG. 2 is a processing
device applicable in the context of the present application and
generalized in view of the SoC exemplarily illustrated in FIG.
1. The computing device 100 includes a bus 110 that directly
or indirectly couples the following devices: memory 665, one
or more processors 615, one or more presentation compo-
nents 116, input/output (I/O) interfaces 680, and a graphics
processing subsystem (GPU) 200. The bus 110 represents
what may be one or more busses (such as an address bus, data
bus, or combination thereof). Although the various blocks of
FIG. 2 are shown with lines for the sake of clarity, in reality,
delineating various components is not so clear, and meta-
phorically, the lines would more accurately be grey and fuzzy.
For example, one may consider a presentation component
such as a display device to be an [/O component connected
through one of the 1/O interfaces 680. Also, CPUs and GPUs
may have memory. The diagram of FIG. 2 is merely illustra-
tive of an exemplary computing device that can be used in
connection with one or more embodiments of the invention.
Distinction is not made between such categories as “worksta-
tion,” “server,” “laptop,” “handheld device,” etc., as all are
contemplated within the scope of FIG. 2 and reference to
“computer” or “computing device.”

Computing device 100 typically includes a variety of com-
puter-storage media, in particular non-tangible transitory
computer readable media 681 operatively (readably and/or
writeably) coupled to the computing device 100 via one of the
1/O interfaces 680 thereof. Computer-storage media may
comprise Random Access Memory (RAM); Read Only
Memory (ROM); Electronically Erasable Programmable
Read Only Memory (EEPROM); flash memory; Compact
Disk Read-Only Memory (CDROM), digital versatile disks
(DVDs) or other optical or holographic media; magnetic cas-
settes, magnetic tape, magnetic disk storage or other mag-
netic storage devices.
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Memory 665 includes computer-storage media in the form
of'volatile and/or nonvolatile memory. The memory 665 may
be removable, non-removable, or a combination thereof.
Exemplary memory includes solid-state memory, hard drives,
optical-disc drives, etc. Computing device 100 includes one
or more processors 615 that read data from various entities
such as bus 110, memory 665 or via the I/O interfaces 680.
Presentation component(s) 116 present data indications to a
user or other device. Exemplary presentation components
116 include a display device, speaker, printing component,
vibrating component, etc. The I/O interfaces 680 allow com-
puting device 100 to be logically coupled to other devices,
some of which may be built in. include a microphone, joy-
stick, game pad, satellite dish, scanner, printer, wireless
device, etc.

Components of the computing device 100 may be used in
image processing. For example, the computing device 100
may be used to implement a graphics pipeline, similar to
graphics pipeline of FIG. 3, which processes and applies
various effects and adjustments to a raw image. Graphic pipe-
lines include a series of operations that are performed on a
digital image. These pipelines are generally designed to allow
efficient processing of a digital image, while taking advantage
of available hardware.

To implement a graphics pipeline, one or more procedural
shaders on the GPU 200 are utilized. Procedural shaders are
specialized processing subunits of the GPU 200 for perform-
ing specialized operations on graphics data. An example of a
procedural shader is a vertex shader 210, which generally
operates on vertices. For instance, the vertex shader 210 can
apply computations of positions, colors and texturing coor-
dinates to individual vertices. The vertex shader 210 may
perform either fixed or programmable function computations
on streams of vertices specified in the memory ofthe graphics
pipeline. Another example of a procedural shader is a pixel
shader 240. For instance, the outputs of the vertex shader 210
can be passed to the pixel shader 240, which in turn operates
on each individual pixel. After a procedural shader concludes
its operations, the information may be placed in a GPU
memory 270. The information may be presented on an
attached display device or may be sent back to the host for
further operations.

The GPU memory 270 provides a storage location on the
GPU 200 where an image may be stored. As various image
processing operations are performed with respect to an
image, the image may be accessed from the GPU memory
270, altered, and then re-stored on the memory 270. The GPU
memory 270 allows the image being processed to remain on
the GPU 200 while it is transformed by a graphics pipeline.
As it is time-consuming to transfer an image from the GPU
200 to the memory 665, it may be preferable for an image to
remain on the GPU memory 270 until processing operations
are completed.

With respect to the pixel shader 240, specialized pixel
shading functionality can be achieved by downloading
instructions to the pixel shader 240. Furthermore, the func-
tionality of many different operations may be provided by
instruction sets tailored to the pixel shader 240 and other
components such as a rasterizer. For example, negating,
remapping, biasing, and other functionality are useful for
many graphics applications. The ability to program the pixel
shader 240 is advantageous for graphics operations, and spe-
cialized sets of instructions may add value by easing devel-
opment and improving performance. By executing these
instructions, a variety of functions can be performed by the
pixel shader 240, assuming the instruction count limit and
other hardware limitations of the pixel shader 240 are not
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exceeded. The pixel shader 240 and other components may
receive instructions through one or more application program
interfaces.

With reference to FIG. 3, an exemplary graphics pipeline is
illustratively shown. The graphics pipeline includes the
stages for transforming data into images that may be dis-
played on a display device. The graphics pipeline includes an
input assembler 205, vertex shader 210, geometry shader 220,
rasterizer 230, pixel shader 240, texture sample 250, and
output merger 260. The image produced by the graphics
pipeline may be written to a render target 275. The graphics
pipeline depicted in FIG. 3 is exemplary, and additional com-
ponents may be added or components removed.

Input assembler 205 reads vertices out of memory and
forms geometry and creates pipeline work items. Vertex
shader 210 is a graphics processing function used to add
special effects to objects in a 3D environment by performing
mathematical operations on the objects’ vertex data. Geom-
etry shader 220 generates new geometric primitives, such as
points, lines, and triangles, from those primitives that were
sent to the beginning of the graphics pipeline. Rasterizer 230
converts scene data into a raster image (e.g. pixels) for output
to a display or file. The rasterizer 230 may sample the scene
data several sub-pixels per pixel. Pixel shader 240 serves to
manipulate a pixel color, usually to apply an effect on an
image, for example; realism, bump mapping, shadows, anti-
aliasing, and explosion effects. It is a graphics function that
calculates effects on a per-pixel basis. The texture sampler
250 is utilized by the vertex shader 210, geometry shader 220,
and pixel shader 240 to fetch data from memory. The texture
sampler 250 can perform texture filtering operations, texture
addressing modes such as clamp or wrap, convert between
different format on reads and select multum in parvo (MIP)
levels based on level of detail (LOD) values. Output merger
260 performs blend, depth and stencil operations. The image
produced by the output merger 260 is written to the render
target 275, which is for example a frame buffer temporarily
storing the image shown on a display to the user.

With reference to FIG. 4, a data flow, which occurs at a
processing device when displaying a compressed image in
accordance with a compression decoding method of the state
of'the art, is schematically illustrated. The objective of image
compression may be considered to reduce irrelevance and
redundancy of the image data in order to be able to reduce the
amount of data that would otherwise be needed to store,
handle, and/or transmit the represented image data. Different
compression encoding methods are known and may be dif-
ferentiated into lossy and lossless compression encoding
methods.

“Lossy” compression is the class of data encoding methods
that uses inexact approximations (or partial data discarding)
for representing the content that has been encoded. Using
lossy compression encoding methods, a substantial amount
of data reduction is often possible before the result is suffi-
ciently degraded to be noticed by the user. Even when the
degree of degradation becomes noticeable, further data
reduction may often be desirable for some applications (e.g.,
to make real-time communication possible through a limited
bit-rate channel, to reduce the time needed to transmit the
content, or to reduce the necessary storage capacity). Lossless
compression encoding methods are used in cases where it is
important that the original and the decompressed data be
identical, or where deviations from the original data could be
deleterious.

A specific lossless compression encoding method is the
so-called run length encoding (RLE). Run length encoding is
a form of encoding method, which considers sequences, in
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which the same data value occurs in many consecutive data
elements, the so-called “runs”, for compression. Using RLE,
runs of data are stored as a single data value and count, rather
than as the original run. This is most useful on data that
contains many such runs, i.e., many sequences in which the
same data value occurs in many consecutive data elements.
For example, RLE may be applied to substantially compress
graphic images such as icons, line drawings, schematic draw-
ings, and images with uniform background.

With reference to FIG. 4, the data flow of an RLE com-
pressed image to be displayed is schematically illustrated.
The image data of the RLE compressed image to be displayed
is provided in a mass storage such as the exemplary non-
volatile flash memory 667. In a first stage “1: WC”, the data of
the compressed image (abbreviated as “C”) is read from the
flash memory exemplifying a mass storage and written (ab-
breviated as “W”) to the random access main memory 665 of
the processing device 600 or 100. In a second stage “2:RC”,
the data of the compressed image (“C”) is read (“R”) from the
main memory 665 and provided to the one or more proces-
sors/cores 615, 610 to 640 for uncompressing operation. In a
third stage “3:WUC”, the data of the uncompressed image
(abbreviated as “UC”) is written (“W”) back to the random
access main memory 665. In a fourth and final stage (“4:
RUC”), the data of the uncompressed image (“UC”) that now
lie in the main memory 665 is read out and provided/supplied
to the graphics subsystem 200 of the processing device 100,
600 such as a Graphics Processing Unit (GPU) having several
cores e.g. applicable for Single-Instruction Multiple-Thread
(SIMT) parallelism. The graphics subsystem 200 outputs the
image on a display. The image may be subject to further
image processing operations performed by the graphics sub-
system. As immediately understood by those skilled in the art
of image and graphics processing, the storage space, which
has to be provided in the random access memory 665, should
be sufficient for storing the data of the compressed image and
the data of the uncompressed image because the uncompress-
ing operation performed by the processors/cores 615, 610 to
640 is typically operated section-wise. Further, data bus
bandwidth is extensively allocated by the decompressing
operation because the data of compressed image is read by the
processors/cores 615, 610 to 640 from the main memory 665,
the data of the uncompressed data is written back by the
processors/cores 615, 620 to 640 to the main memory 665 and
the data of the uncompressed data is finally read by the graph-
ics subsystem 200 from the main memory 665.

In order to minimize the use of resources of the processing
device 100/600 for displaying a compressed image, the
present application suggests a image compression methodol-
ogy, which leverages the capabilities, functionalities and
resources provided by graphics subsystems 200, in particular
capabilities, functionalities and resources as described above
with reference to FIGS. 2 and 3. In order to allow for taking
advantages of the capabilities, functionalities and resources
of such graphics subsystem 200, the image compression
methodology according to an example of the present appli-
cation suggests a compression enclosing method, which
enables such graphics subsystem 200 for uncompressing an
image in compressed form. With reference to FIG. 5, a data
flow, which occurs at a processing device when displaying a
compressed image in accordance with an example of the
compression encoding method of the present application, is
schematically illustrated. In a first stage, “1:WC”, the data of
the compressed image (abbreviated as “C”) is read from the
flash memory exemplifying a mass storage and written (ab-
breviated as “W”) to the random access main memory 665 of
the processing device 600 or 100. In a second stage “2:RC”,



US 9,307,249 B2

9

the data of the compressed image (“C”) is read (“R”) from the
main memory 665 and provided/supplied to the graphics
subsystem 200 of the processing device 100, 600 for uncom-
pressing and displaying operations. The image may be sub-
ject to further image processing operations performed by the
graphics subsystem.

An example of the compression enclosing method will be
described in the following with reference to FIGS. 6 to 8. The
unprocessed image is supplied to an encoder 300, which may
be implemented in software and may make use of the func-
tionality of one or more hardware components, in particular
the functionality of one or more hardware components of a
graphics subsystem 200. It should be noted that the terms
encoding and compressing and the terms decoding and
uncompressing are used synonymously.

The encoder 300 is operatively coupled to a memory such
the main memory 665, which stores the data of the uncom-
pressed image. The data of the uncompressed image may be
supplied or streamed from the memory to the encoder 300 or
may be read bunch-wise by the encoder 300 from the
memory. The encoder 300 generates geometry data (primitive
position data), texture mapping data (or texture coordinate
data) and texture image data, the totality of which form the
data of the compressed image as schematically illustrated in
FIG. 7. The data generated and outputted by the encoder 300
may be written to the memory for being stored thereat for later
use.

In accordance with an example of the compression encod-
ing method of the present application, the domain of the
uncompressed image is partitioned or subdivided into several
substructures as schematically illustrated in FIG. 6. Each
substructure has a size dimension, which may be predeter-
mined at the encoder 300 or supplied thereto, provided by
user input, or determined by the encoder 300 in response to an
analysis of the image to be compressed. Such an analysis may
consider the size of image subsections having image pixels
with the same value. At least one size dimension is provided.
The substructures may all have the same size dimension or the
size dimension may vary among the substructures. In the
example shown in FIG. 6, the exemplarily illustrated sub-
structures 80 have an exemplary size dimension of 32x4
pixels 85. Each substructure is defined on the basis of at least
one geometric primitive. The term geometric primitive as
such is used in the field of computer graphics and should be
understood as relating to a geometric object, herein a two-
dimensional geometric object. The geometric object may be
further understood to relate to a definition of a geometric
shape. Properties of the geometric object may include posi-
tioning and texturing of the object surface. At least one geo-
metric primitive of the substructure is defined for each sub-
structure on the basis of geometry data defining a positioning
(positional arrangement) of the at least one geometric primi-
tive within the image space. The at least one geometric primi-
tive represents geometrically each respective substructure. In
the example shown in FIG. 6, the substructure is defined on
the basis of two triangles. Fach of the triangles is further
defined on the basis of three position coordinates defining the
positioning of the respective triangle within the image space.
The coordinates 90, 91 and 92 for instance define the first
triangle and the coordinates 91, 92 and 93 define the second
triangle. The positions of the triangles within the image space
are for instance defined by the coordinate 90 defining the
position (X, y)=(X,, ¥,), coordinate 91 defining the position
(Xg, Yo+M-=1), wherein for instance M=3 as illustratively
depicted in FIG. 6, coordinate 92 defining the position (x,+
N-1,y,), wherein for instance N=32 as illustratively depicted
in FIG. 6, and coordinate 93 defining the position (x,+N-1,
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yo+M-1). Accordingly, the positioning of the substructure
within the image space is defined on the basis of the position-
ing of the one or more geometric primitives, the totality of
which defining the substructure. It should be noted that the
geometric primitives of a substructure may have common
coordinates as exemplarily illustrated in FIG. 6 with respect
to coordinates 91 and 92.

As described above, the image domain is partitioned into
substructures each of which defined on the basis of at least
one geometric primitive. Each of the geometric primitives
provides a two-dimensional surface, which is to be filled with
an image detail of the unprocessed image in accordance with
the positioning of the substructure. The texture mapping
operation is applied for texture lookup to determine the tex-
ture pixels, the so-called texels, from a texture image to fill the
surface. The texture image data represents the data basis, onto
which the texture mapping operation are applied to fill the
surface. In other words, a two-dimensional texture image is
mapped or glued to the surface of the graphic primitive. The
two-dimensional texture image is defined in texture image
space and a so-called texture lookup, which is the texture
mapping, is performed using interpolated texture coordinates
to determine the pixels to fill the surface of the graphic primi-
tive.

The image data corresponding to each substructure (in
accordance with the positioning of the substructure within the
image space) is further analyzed in order to consider whether
the image data thereof may be compressible or not. In
response to the analysis result, a texture image is generated
for each of the substructures.

Change of pixel values of the image data subset is describ-
able on the basis of a texture mapping operation in the pixel
value space of the texture image. Texture mapping operations
include for instance interpolation operations such as nearest
neighbor sampling, linear interpolation, bilinear interpola-
tion, cubic interpolation and be-cubic interpolation. In the
context of the present application, data should be considered
to be compressible if the retrieved pixel values of the subset of
image data are describable on the basis of a texture mapping
operation and selected pixel values of the subset of image
data. In the following, examples are described of the sake of
a deeper understanding.

Image Data Subset with Similar Pixel Values

The subset of data of the image corresponding to the sub-
structure is retrieved and it is determined from the subset of
image data whether the pixel values of the retrieved subset of
image data have the same pixel value or have similar values.
Similar pixel values should be understood in that the pixel
values differ within a predefined distance (color range) in
color space. This means that the predefined distance in color
space allows for defining a measure of similarity of the pixel
values. Quantifying metrics are known in the art to determine
the difference or distance between two colors in color space:
For instance, such metrics make use of the Euclidean distance
in a device independent color space.

If the pixel values have the same value or similar pixel
values then data of a texture image in compressed form is
defined, which has a single pixel with a pixel value corre-
sponding to the same pixel value or a pixel value representa-
tive of the pixel values differing within a predefined distance
in color space. The representative pixel value may be an
average pixel value with respect to the color space. Hence, the
texture image only comprises one pixel having assigned the
pixel value resulting from the analysis of the subset of image
data. Texture mapping data is assigned to the geometry data of
the substructure, which texture mapping data enables map-
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ping the defined compressed texture image onto the surface of
the at least one geometric primitive of the substructure.

Image Data Subset with Color Gradient

The subset of data of the image corresponding to the sub-
structure is retrieved and it is determined from the subset of
image data whether the pixel values of the retrieved subset of
image data change in accordance with a color gradient
extending over the range of the image data subset. The change
of pixel values may follow a color gradient within a pre-
defined range of variation described by a distance in color
space.

If the pixel values are determined to show a color gradient
extending over the substructure describable by initial gradient
values and final gradient values then data of a texture image in
compressed form is defined, which has pixels with pixel
values corresponding to initial gradient values and pixels with
pixel values corresponding to final gradient values. In par-
ticular, each of the gradient values comprises one or two
initial gradient values depending on the interpolation map-
ping operation used. The texture mapping operation recon-
structs the color gradient by interpolation between the initial
gradient values and the final gradient values to obtain the
values lying in-between in texture pixel space. The interpo-
lation operation may be a linear interpolation operation on the
basis of one gradient value and the final gradient value, a
cubic interpolation operation on the basis of one gradient
value and the final gradient value, a bi-linear interpolation
operation on the basis of one or two gradient values and the
one or two final gradient values, or bi-cubic interpolation
operation on the basis of one or two gradient values and the
one or two final gradient values. Hence, the texture image
only comprises two to four pixels having assigned the pixel
values resulting from the analysis of the subset of image data.
Texture mapping data is assigned to the geometry data of the
substructure, which texture mapping data enables mapping
the defined compressed texture image onto the surface of the
at least one geometric primitive of the substructure.

Otherwise, if the subset of image data is considered not to
be compressible (e.g., the pixel values of the image data
subset are not describable on the basis of a texture mapping
operation and selected pixel values of the image data subset),
data of a texture image in uncompressed form is defined. The
data of the texture image in uncompressed form comprises
pixels with pixel values corresponding to the pixel values of
the retrieved subset of image data. Texture mapping data is
assigned to the geometry data of the substructure, which
texture mapping data enables mapping the defined texture
image onto the at least one geometric primitive of the sub-
structure.

The compressed form of the image provided to the encoder
300 comprises the geometry data, the texture mapping data
and the texture image data for each substructure, which is
outputted by the encoder 300.

With reference to FIG. 8, an example of a flow diagram of
the compression encoding method operable with the encoder
300 is illustratively shown. The image data of the uncom-
pressed image is provided (cf. 10). At least a size dimension
is provided (cf. 15). The size may be defined in order to
partition the image domain into an integer number of sub-
structures each one size corresponding to one of the at least
one provided size dimension. The size dimension(s) of the
substructures may be further defined in accordance with the
texture tile size of the target graphics subsystem, at which the
finally obtained compressed image is to be decoded or
uncompressed. The target graphics subsystem may have a
limitation of the supported size of textures. The defining of
the size dimension(s) of the substructures allows for consid-
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ering such limitations. Moreover, as explained below in more
detail, the size dimension(s) of the substructures may be also
defined by taking into account the properties of the image to
be compressed, in particular the size of subsections of the
image, the pixels of which parts have the same values. The
size dimension may be varied in order to determine at least
one size dimension of the substructures resulting to a com-
pressed image having an optional size. The at least one
optional size dimension may be a trade off between size of the
compressed image and the capabilities and resource require-
ments of the target graphics subsystem.

In accordance with the defined substructure size, the image
domain is partitioned into several substructures (cf. 20), in
particular an integer number of substructures.

For each substructure (cf. 25), at least one geometric primi-
tive is defined (cf. 33). The at least one geometric primitive is
defined by assigning a set of vertices, which defines the posi-
tioning of the at least one geometric primitive in the image
domain with respect to the image space. Accordingly, the at
least one geometric primitive represents the geometry of the
respective substructure and the positioning of the respective
substructure with respect to the image space. Each vertex
comprises for instance a two-dimensional position informa-
tion, a coordinate, defining the positions x and y with respect
to a predefined coordinate origin of the image space, which
may be for instance located at the top left corner of the image
as exemplarily illustrated in FIG. 6.

The so-called geometric primitive is a basic geometric
object supported by the target graphics subsystem. For
instance, a substructure may be defined to comprise NxM
pixels of the image. The set of vertices may comprise four
vertices, which define two triangle primitives sharing two
vertices. Provided that only rectangular substructures are
defined, two vertices may be sufficient to define such a rect-
angular substructure, e.g. the coordinates 90 and 93 illustra-
tively shown in FIG. 6. Those skilled in the art will understand
that the compression encoding method as described is not
limited to rectangular substructures or to any specific primi-
tive for defining an image subsection defined by each sub-
structure. The geometry of the substructures may differ. Each
substructure spans a simply connected domain, which is a
subdomain of the domain defined by the image and the total-
ity of substructures defines a simply connected domain equal
to the domain spanned by the image, wherein the substruc-
tures do not overlap each other, e.g., the domains of the
substructure are disconnected.

Further, the subset of data of the image corresponding to
the respective substructure is retrieved (cf. 34) and the pixel
values of the retrieved subset of data of the image are ana-
lyzed in order to determine whether the image data of the
subset is compressible on the basis of a texture mapping
operation in pixel value space (cf. 35).

If the pixels of the retrieved subset of the image data are
reconstructable or derivable from one or more selected pixels
on the basis of a texture mapping operation in pixel value
space and the selected pixels are input parameters to the
texture mapping operation, a texture image in compressed
form is defined. This means that texture image data is defined,
which comprises the selected pixels, which are representative
of the pixel of the retrieved subset of the image data. Texture
coordinates are generated (cf. 50) for the set of vertices defin-
ing the analyzed substructure to point to the selected pixels of
the texture image for the analyzed substructure (cf. 55).

Otherwise, if the pixels of the retrieved subset of the image
data are not reconstructable or derivable from selected pixels
representative of the pixel of the retrieved subset of the image
data, texture image data in uncompressed form is defined.
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This means that texture image data is defined, which com-
prises the pixels with values of the subset of image data
corresponding to the analyzed substructure. Texture coordi-
nates are generated (cf. 40) for the set of vertices defining the
analyzed substructure to point to the texture image data for
this analyzed substructure (cf. 45). The subset of data of the
uncompressed image, which corresponds to the analyzed
substructure, may be copied or extracted to create the texture
image data.

As described below with reference to FIGS. 10 and 11 in
more detail, two or more substructures may be merged (cf.
65) into a composed substructure to further compress the
image data.

If the last substructure has been analyzed (cf. 30), the
geometry data (vertices), the texture mapping data (texture
coordinates, vectors pointing to the texture image data) and
the texture image data is determined, the set of which repre-
sents the data of the image in compressed form (cf. 60 and
FIG. 7).

An exemplary encode 300, which is configured to operate
the above described image compression methodology is
schematically illustrated in FIG. 7.

The exemplary encoder 300 comprises a geometry engine
310, a texture engine 320 and an optional substructure merger
330. The encoder 300 is provided with at least one data input
and data output, which may be for instance provided by an
application interface (API), which specifies how the encoder
300 implemented as a software component interacts with
each other software components and operating system of a
processing device such as the exemplary processing devices
schematically illustrated in FIGS. 1 and 2 and described
above with reference thereto. It should be understood that the
geometry engine 310, texture engine 320 and substructure
merger 330 are referred to for the sake of intelligibility and
illustration. The encoder 300 should not be understood as
being limited to those subcomponents. In particular, the func-
tionality of those subcomponents 310, 320 and 330 may be
implemented differently without departing from the scope of
the present invention. The encoder 300 is arranged to receive
image data of an image in uncompressed form and at least one
size dimension. The image data and the size dimension may
be read from a memory or supplied from the memory to the
encoder 300.

The geometry engine 310 is arranged to receive at least
information about the domain of the image, which is part of
the image data. The image domain should be understood to at
least refer to the size dimensions of the image such as image
width and image height in numbers of pixels. The at least one
size dimension of the substructures may be also defined with
respect of numbers of pixels in width and height of the sub-
structures.

The geometry engine 310 is for instance configured to
partition the image domain into the several substructures,
each of which having one of the at least one size dimension
and to define at least one geometric primitive for each sub-
structure on the basis of geometry data. The geometry data
defines a positional arrangement of the at least one geometric
primitive in the image space. The at least one geometric
primitive represents geometrically the substructure. This
means that each substructure is defined on the basis of the at
least one geometric primitive.

The texture engine 320 is operatively coupled to the geom-
etry engine 310 and arranged to receive the geometry data
from the geometry engine 310.

The texture engine 320 is for instance configured to
retrieve a subset of data of the image corresponding to the
substructure and determine whether the image data of the
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subset is compressible on the basis of a texture mapping
operation in pixel value space.

If the pixel of the retrieved subset of the image data are
reconstructable or derivable from one or more selected pixels
as input parameters for a texture mapping operation in pixel
value space then the texture engine 320 is further configured
to define data of a texture image in compressed form. The data
thereof comprises selected pixels, which are representative of
the pixel of the retrieved subset of the image data. The texture
engine 320 is further configured to assign texture mapping
data to the geometry data of the substructure for mapping the
defined texture image onto the at least one geometric primi-
tive of the substructure.

Otherwise if the pixels of the retrieved subset of the image
data are not reconstructable or derivable from selected pixels
representative of the pixel of the retrieved subset of the image
data, then the texture engine 320 is further configured to
define data of a texture image in uncompressed form. The data
thereof comprises pixels having values corresponding to the
pixel values of the retrieved subset of image data, and assign
texture mapping data to the geometry data of the substructure
for mapping the defined texture image onto the at least one
geometric primitive of the substructure.

The encoder 300 is configured to output the data of the
image in compressed form, the data of which comprises the
geometry data, the texture mapping data and the texture
image data for each substructure.

The substructure merger 330 is operatively coupled to the
geometry engine 310 and the texture engine 320 and arranged
to receive geometry data from the geometry engine 310 and
texture data comprising texture mapping data and texture
image data from the texture engine 320.

The substructure merger 330 is for instance configured to
merge at least two adjacent substructures into a new merged
substructure replacing the at least two adjacent substructures
and having the positioning of the at least two adjacent sub-
structures. The merging of substructures and the functionality
of the substructure merger 330 will be described below in
detail with reference to FIGS. 10 and 11.

FIG. 9 schematically illustrates an exemplary uncom-
pressed image having a size of 2-N-M pixels. The image
should be considered to be composed of two substructures
with rectangular geometry. The first substructures having a
size of N-M pixels should be assumed not to be compressible
whereas the second substructures having also a size of N-M
pixels should be assumed to be compressible. In view of the
above teaching, this means that at least two pixel values of the
image data corresponding to the first substructures differ
from each other and the pixel values of the image data corre-
sponding to second substructures are the same. Each rectan-
gular substructure is defined on the basis of a set of four
vertices. Hach set of vertices defines two triangles represent-
ing the geometric primitives representing the substructures.

The space spanned by the image may be defined with
respect to a coordinate origin. The image pixel of the top left
corner of image may have the position coordinate (X,, y,) and
the image pixel of the bottom right corner of image may have
the position coordinate (x,+2N-1, y,+M-1), the top left cor-
ner may be (Xq, ¥5)=(0, 0).

The four vertices of the set defining the two triangles defin-
ing the geometry of the first substructure of the image have the
position coordinates (X, Yo), (X, Yo+M-1), (X,+N-1, y,) and
(x+N-1, y,+M-1). The first triangle is described by the posi-
tion coordinates (X,, Vo), (X, y+M-1) and (x,+N-1, y,) and
the second triangle is described by the position coordinates
(Xgy Yo+tM-1), (xo+N-1, y,) and (xo+N-1, y,+M-1) with
respect to the image space.
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The four vertices of the set defining the two triangles defin-
ing the geometry of the second substructure of the image have
the position coordinates (X,+N, V), (Xo+N, yo+M-1), (X,+
2N-1, yo) and (Xo+2N-1, y,+M-1). The first triangle is
described by the position coordinates (X,+N, y,), (Xo+N,
yo+M-1) and (x,+2N-1, y,) and the second triangle is
described by the position coordinates (X+N, y,+M-1), (X,+
2N-1,y,) and (x,+2N-1, y,+M-1) with respect to the image
space.

As already aforementioned, the first substructure should be
considered as incompressible. Accordingly, the image data
corresponding to the first substructure of the image may be
extracted or copied to create the data defining the texture
image, which is applied to fill the surface of the triangle
primitives defining the geometry of the first substructure. The
second substructure should be considered as compressible.
This means that selected pixels are defined, which are repre-
sentative of the data of the texture image, which is applied to
fill the surface of the triangle primitives defining the geometry
of the second substructure. In the illustrative example shown
in FIG. 9, it should be assumed that the pixel values of the
second substructure have the same value in color space or at
least similar values within a distance in color space.

For the sake of example, the texture coordinates as shown
in FIG. 9 point to the texture image comprising the texture
image data for the two triangles defining the first substructure
and the two triangles defining the second substructure. The
following texture coordinates are defined with respect to a
texture image size of 2-N-M pixels.

Accordingly, the first triangle primitive of the first sub-
structure is geometrically defined by the vertices (x, y) with
the position coordinates (X,, ¥,), (Xo, Yo+M-1) and (x,+N-1,
Vo) and has assigned the texture coordinates (vectors pointing
to the two-dimensional texture image coordinates) (0, 0), (0,
1) and

N-1
(Z-N—l’

)

and the second triangle primitive of the first substructure is
geometrically defined by the vertices (x, y) with the position
coordinates (X, Yo+M-1), (X,+N-1, y,) and (x,+N-1,
yo+M-1) has assigned the texture coordinates (vectors point-
ing to the two-dimensional texture image coordinates) (0, 1),

and

The first triangle primitive of the second substructure is
geometrically defined by the vertices (x, y) with the position
coordinates (X,+N, y,), (Xo+N, y,+M-1) and (x,+2-N-1, y,)
and has assigned the texture coordinates (vectors pointing to
the two-dimensional texture image coordinates)
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N
st O = 9)

and

N
(57 =19)

and the second triangle primitive of the second substructure is
geometrically defined by the vertices (x, y) with the position
coordinates (X,+N, yo+M-1), (x,+2-N-1, y,)and (x,+2-N-1,
yo+M-1) has assigned the texture coordinates (vectors point-
ing to the two-dimensional texture image coordinates)

N N
(57— e
and

N
lz7=0

The texture image data of the first substructure may be
denoted as uncompressed whereas the texture image data of
the second substructure may be denoted as compressed. The
finally created texture image data comprises N-M+1 pixels in
total, which can be considered as a significant reduction of the
number of pixels in comparison with the 2-N-M pixels of the
uncompressed image even if considering that the amount of
data required for the position coordinates and the texture
coordinates have to be considered when comparing the
amount of data required for the uncompressed image and the
amount of data required for the compressed image. However,
the reduction of the data size is only one target of the com-
pression encoding method of present application; another
target of the compression encoding method of present appli-
cation is to enable decompressing/decoding at the graphics
subsystem 200 resulting in a significant reduction of data
transfer bandwidth at the processing device displaying the
compressed image.

Two or more substructures may be merged into one sub-
structure. With regard to FIG. 10, a schematic illustration of a
merging of two substructures 80 and 80' is exemplified.
Assume that the image comprises two substructures adjacent
to each other. The phrase adjacent substructures may be
understood to refer to substructures, which have one common
edge and which have adjoining edges, respectively.

The left hand schematic illustration in FIG. 10 relates to a
merging of substructures 80 and 80', each of which has
assigned an uncompressed texture image. This means that
each of the texture images comprises texture image data,
which corresponds to the subset of data of the image corre-
sponding to the respective substructure 80, 80'. The righthand
schematic illustration in FIG. 10 relates to a merging of sub-
structures 80 and 80', each of which has assigned a com-
pressed texture image with one pixel of representative the
same value. This means that each of the texture images com-
prises compressed texture image data having a single pixel
with a value. The values of the pixels of the compressed
texture images are equal. The both illustrations of FIG. 10
exemplify conditions, which have to be complied with to
enable merging.



US 9,307,249 B2

17

In FIG. 10, the substructures 80 and 80' are aligned in x or
width direction and have a common and adjoining edge
aligned in y or height direction. In order to merge the sub-
structures the two substructures 80 and 80' are replaced with
one new substructure 80". The new substructure 80" has a size
dimension equal to the sum of the size dimensions of the two
adjacent substructures 80, 80'. The positioning of the new
substructure 80" is defined to cover the positioning taken by
the two adjacent substructures 80, 80'.

This means that the geometric primitives, on the basis of
the two adjacent substructures 80, 80' are defined, are
replaced by at least one geometric primitive on the basis of
which the geometry of the new substructure 80" is defined. As
exemplarily shown in FIG. 10, each of the two adjacent sub-
structures 80, 80' is defined on the basis of two triangle
primitives defined on the basis of the vertices 90 to 93 and the
vertices 90' to 93', respectively. The new substructure 80" is
defined in turn on the basis of two triangle primitives defined
on the basis of the vertices 90, 91, 92' and 93'. As understood
from the example shown in FI1G. 10, vertices defined in accor-
dance with substructures 80, 80' to be replaced may be
adopted for the new replacing substructure 80". The position-
ing of the new substructure 80" is defined to take the posi-
tioning of the two replaced substructures 80 and 80'. The
same applies to the triangle primitives, e.g., the positioning of
the newly defined triangle primitives for the new substructure
80" cover the positioning of the four triangle primitives of the
two adjacent substructures 80 and 80'.

In case the two adjacent substructures 80, 80' have assigned
uncompressed texture image data, the texture image data
thereof is joined and the texture mapping data (texture coor-
dinates of the vertices) is accordingly adapted if necessary
(cf. left hand illustration of FIG. 10).

In case the two adjacent substructures has assigned com-
pressed texture image data with the same pixel value, text
image data is defined with a single pixel having that same
(common) value. The texture mapping data (texture coordi-
nates of the vertices) is accordingly adapted (cf. right hand
illustration of FIG. 10).

FIG. 11 schematically illustrates an example of a flow
diagram ofthe substructure merging operation. Adjacent sub-
structures are identified (cf. 66). The substructures may fur-
ther have the same dimension with regard to their common
edge; i.e., the edge which respect to which the substructures
are adjacent to each other.

The identified substructures are analyzed whether a merg-
ing thereof is feasible (cf. 67). A merging is feasible in case
both identified substructures have assigned uncompressed
texture image data or in case both identified substructures
have assigned compressed texture image data, which are
compatible. The compressed texture image data is compatible
if the texture image data of the two adjacent substructures are
describable on the basis of a common texture mapping opera-
tion in the pixel value space of the texture image.

If the texture image data of the identified substructures
allow for merging, a new merged substructure geometrically
covering the identified substructures is provided (cf. 69). At
least one geometric primitive of the substructure is defined for
the new merged substructure on the basis of geometry data
defining a positioning (positional arrangement) of the at least
one new geometric primitive within the image space (cf. 70).
The atleast one new geometric primitive represents geometri-
cally the new merged substructure. In case the identified
substructures have assigned uncompressed texture image
data, the texture image data thereof is joined (cf. 72) and the
texture mapping data (texture coordinates of the vertices) is
accordingly adapted if necessary (cf. 73).
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In case the two adjacent substructures has assigned com-
pressed texture image data with the same representative pixel
value or similar representative pixel values with respect to a
predefined distance in color space, text image data is defined
(cf. 72) with a single pixel having that same (common or
averaged) representative pixel value. In case the two adjacent
substructures has assigned compressed texture image data
representative of a color gradient, which extends over the two
adjacent substructure, text image data is defined (cf. 72) with
pixel values corresponding to initial gradient values and pix-
els with pixel values corresponding to final gradient values
representative of the color gradient expending over the two
adjacent substructure. The texture mapping data (texture
coordinates of the vertices) is accordingly adapted (cf. 73).

The process of merging may be repeated until the substruc-
tures, which are available at a given point in time, are checked
for merging (cf. 74). Moreover, the process of merging may
be (iteratively) repeated to allow for checking whether
merged substructures may be further merged.

On the basis of the detailed description above, those skilled
in the art immediately understand an exemplary implemen-
tation of the substructure merger 330 referred to with refer-
ence to FIG. 8. In particular, the substructure merger 330 is
configured to identify at least two adjacent substructures and
analyse whether the identified substructures are mergable.
Further, the substructure merger 330 is configured to define
the new merged substructure on the basis of at least one
geometric primitive and the assign a merged texture image to
the least one geometric primitive of the new merged substruc-
ture. The merged texture image may be either a compressed
texture image or an uncompressed texture image. The com-
pressed texture image has a single pixel with a value being
equal to the pixel value of the texture images of the replaces
substructures. The uncompressed texture image results from
a merging of the texture images of the replaces substructures.
The texture mapping data (texture coordinates) is adapted by
the substructure merger 330 if necessary.

With reference to FIG. 12, the finally obtained compressed
image may be decompressed or decoded by making use ofthe
functionality of a graphics pipeline such the exemplary
graphics pipeline illustratively shown in FIG. 3. The data of
the compressed image comprises geometry data (sets of ver-
tices), texture mapping data (texture coordinates assigned to
the vertices) and texture image data. The geometry data and
the texture mapping data is provided to the vertex shader 210,
which generates display representations of the geometric
primitives in accordance with the geometric positioning
defined by the geometry data. The texture sampler 250 fills
the display representations of the geometric primitives with
texture as defined by the texture coordinates pointing to sub-
sets of the texture image data. The components of the graphics
pipeline generate a display representation of the uncom-
pressed image, which will be for instance finally displayed to
a user on a display.

Notably, the invention may be implemented in a computer
program for running on a computer system, for example as
explained above with reference to FIGS. 1 and 2. The com-
puter system may comprise at least a processor operatively
coupled to a memory for implementing the invention of the
present application. The computer program may include at
least code portions for performing of a method according to
the invention when run on a programmable apparatus, such as
a computer system or enabling a programmable apparatus to
perform functions of a device or system according to the
invention.

A computer program is a list of instructions such as a
particular application program and/or an operating system.
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The computer program may for instance include one or more
of: a subroutine, a function, a procedure, an object method, an
objectimplementation, an executable application, an applet, a
servlet, a source code, an object code, a shared library/dy-
namic load library and/or other sequence of instructions
designed for execution on a computer system.

The computer program may be stored internally on com-
puter readable storage medium or transmitted to the computer
system via a computer readable transmission medium. All or
some of the computer program may be provided on computer
readable media permanently, removably or remotely coupled
to an information processing system. The computer readable
media are non-transitory, tangible computer-readable media.
Such non-transitory, tangible computer-readable media may
include, for example and without limitation, any number of
the following: magnetic storage media including disk and
tape storage media; optical storage media such as compact
disk media (e.g., CD-ROM, CD-R, etc.) and digital video disk
storage media; non-volatile memory storage media including
semiconductor-based memory units such as FLASH
memory, EEPROM, EPROM, ROM; ferromagnetic digital
memories; MRAM; volatile storage media including regis-
ters, buffers or caches, main memory, RAM, etc.; and data
transmission media including computer networks, point-to-
point telecommunication equipment, and carrier wave trans-
mission media, just to name a few.

A computer process typically includes an executing (run-
ning) program or portion of a program, current program val-
ues and state information, and the resources used by the
operating system to manage the execution of the process. An
operating system (OS) is the software that manages the shar-
ing of the resources of a computer and provides programmers
with an interface used to access those resources. An operating
system processes system data and user input, and responds by
allocating and managing tasks and internal system resources
as a service to users and programs of the system.

The computer system may for instance include at least one
processing unit, associated memory and a number of input/
output (I/O) devices. When executing the computer program,
the computer system processes information according to the
computer program and produces resultant output information
via I/O devices.

In the foregoing specification, the invention has been
described with reference to specific examples of embodi-
ments of the invention. It will, however, be evident that vari-
ous modifications and changes may be made therein without
departing from the broader spirit and scope of the invention as
set forth in the appended claims.

Those skilled in the art will recognize that the boundaries
between the illustrated logic blocks and/or functional ele-
ments are merely illustrative and that alternative embodi-
ments may merge blocks or elements or impose an alternate
decomposition of functionality upon various blocks or ele-
ments. Thus, it is to be understood that the architectures
depicted herein are merely exemplary, and that in fact many
other architectures can be implemented which achieve the
same functionality.

Any arrangement of components to achieve the same func-
tionality is effectively associated such that the desired func-
tionality is achieved. Hence, any two components herein
combined to achieve a particular functionality can be seen as
associated with each other such that the desired functionality
is achieved, irrespective of architectures or intermedial com-
ponents. Likewise, any two components so associated can
also be viewed as being operably connected, or operably
coupled, to each other to achieve the desired functionality.
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Furthermore, those skilled in the art will recognize that
boundaries between the above described operations merely
illustrative. The multiple operations may be combined into a
single operation, a single operation may be distributed in
additional operations and operations may be executed at least
partially overlapping in time. Moreover, alternative embodi-
ments may include multiple instances of a particular opera-
tion, and the order of operations may be altered in various
other embodiments.

Also for example, in one embodiment, the illustrated
examples may be at least partly implemented as circuitry
located on a single integrated circuit or within a same device.
For example, one or more components of the encoder 300 of
FIG. 7 may be implemented on the basis of an integrated
circuit. Alternatively, the examples may be implemented as
any number of separate integrated circuits or separate devices
interconnected with each other in a suitable manner.

Also for example, the examples, or portions thereof, may
implemented as soft or code representations of physical cir-
cuitry or of logical representations convertible into physical
circuitry, such as in a hardware description language of any
appropriate type.

Also, the invention is not limited to physical devices or
units implemented in non-programmable hardware but can
also be applied in programmable devices or units able to
perform the desired device functions by operating in accor-
dance with suitable program code, such as mainframes, mini-
computers, servers, workstations, personal computers, note-
pads, personal digital assistants, electronic games,
automotive and other embedded systems, cell phones and
various other wireless devices, commonly denoted in this
application as “computer systems”.

However, other modifications, variations and alternatives
are also possible. The specifications and drawings are,
accordingly, to be regarded in an illustrative rather than in a
restrictive sense.

In the claims, any reference signs placed between paren-
theses shall not be construed as limiting the claim. The word
‘comprising’ does not exclude the presence of other elements
or steps then those listed in a claim. Furthermore, the terms
“a” or “an”, as used herein, are defined as one or more than
one. Also, the use of introductory phrases such as “at least
one” and “one or more” in the claims should not be construed
to imply that the introduction of another claim element by the
indefinite articles “a” or “an” limits any particular claim
containing such introduced claim element to inventions con-
taining only one such element, even when the same claim
includes the introductory phrases “one or more™ or “at least
one” and indefinite articles such as “a” or “an”. The same
holds true for the use of definite articles. Unless stated other-
wise, terms such as “first” and “second” are used to arbitrarily
distinguish between the elements such terms describe. Thus,
these terms are not necessarily intended to indicate temporal
or other prioritization of such elements. The mere fact that
certain measures are recited in mutually different claims does
not indicate that a combination of these measures cannot be
used to advantage.

The invention claimed is:

1. A processing device for compressing an image, said
processing device comprises at least a processor operatively
coupled to a memory and an encoder, wherein said memory is
configured to provide data of an image and at least one size
dimension to the encoder,

wherein said encoder is configured to receive said data of

said image and said at least one size dimension from said
memory and comprises a geometry engine, which is
further configured
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to partition the image domain into several substructures
each having one ofthe at least one size dimension; and
to define at least one geometric primitive for each sub-
structure on the basis of geometry data defining a
positioning of the at least one geometric primitive
within the image space, wherein said at least one
geometric primitive represents geometrically the sub-
structure,
wherein said encoder further comprises a texture engine,
which is configured for each substructure
to retrieve a subset of data of the image corresponding to
the substructure;
to determine whether pixels of the retrieved subset are
reconstructable from one or more selected pixels as
input parameters on the basis of a texture mapping
operation in the pixel value space, wherein the
selected pixels are representative of the subset of
image data and input parameters to the texture map-
ping operation in pixel value space;
if the pixels of the retrieved subset are reconstructable to
define data of a texture image in compressed form
with the selected pixels;
otherwise to define data of a texture image in uncom-
pressed form, which data corresponds to the retrieved
subset of image data; and
to assign texture mapping data to the geometry data of
the substructure for mapping the defined texture
image onto the at least one geometric primitive of the
substructure,
wherein a compressed form of said image comprises the
geometry data, the texture mapping data and the texture
image data for each substructure.
2. The processing device of claim 1, wherein said encoder
is further configured
to determine whether the pixel values of the retrieved sub-
set are at least similar with respect to a distance in color
space, and
to define the data of the texture image in compressed form,
which has one selected pixel with a pixel value repre-
sentative of the similar pixel values of the retrieved
subset.
3. The processing device of claim 1, wherein said encoder
is further configured
to determine whether the pixel values of the retrieved sub-
set change in accordance with a color gradient within a
predefined variation range in color space, and
to define the data of the texture image in compressed form,
the data of which has selected pixels with values repre-
sentative of initial gradient values and final gradient
values.
4. The processing device of claim 1, wherein said encoder
is further configured
to define a set of vertices for the at least one geometric
primitive of each substructure,
wherein each vertex comprises an image coordinate defin-
ing a positioning within image space, wherein the image
coordinates form the geometry data,
wherein each vertex has further assigned a texture coordi-
nate, which defines a positioning within texture image
space, wherein the texture coordinates form the texture
mapping data.
5. The processing device of claim 1,
wherein the at least one geometric primitive defining the
substructure comprises two triangle primitives, wherein
said two triangle primitives are defined on the basis of
four image coordinates, wherein a texture mapping
coordinate is assigned to each of the image coordinates.
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6. The processing device of claim 1,
wherein said substructure is rectangular, wherein said rect-
angular substructure is defined on the basis of two image
coordinates, wherein a texture mapping coordinate is
assigned to each of the image coordinates.
7. The processing device of claim 1,
wherein said image is a simply connected domain,
wherein each geometric primitive is a simply connected
domain,
wherein the domains of the geometric primitive are subdo-
mains of the image domain,
wherein the domains of the geometric primitives are dis-
connected,
wherein said totality of geometric primitives defines a sim-
ply connected domain corresponding to the image
domain.
8. The processing device of claim 1, wherein said encoder
further comprises a merger, which is configured
to merge at least two substructures, which are adjacent to
each other and which have assigned texture images in
uncompressed form or which have assigned texture
images in compressed form with the same pixel value.
9. A method of compressing an image, comprising:
providing data of an image;
providing at least one size dimension;
partitioning the image domain into several substructures
each having one of the at least one size dimension; and
defining at least one geometric primitive for each substruc-
ture on the basis of geometry data defining a positioning
of the at least one geometric primitive within the image
space, wherein said at least one geometric primitive
represents geometrically the substructure,
wherein said method further comprises for each substruc-
ture:
retrieving a subset of data of the image corresponding to
the substructure;
determining whether pixels of the retrieved subset are
reconstructable from one or more selected pixels on
the basis of a texture mapping operation in the pixel
value space, wherein the selected pixels are represen-
tative of the subset of image data and input parameters
to the texture mapping operation in pixel value space;
if the pixels of the retrieved subset are reconstructable,
then defining data of a texture image in compressed
form with the selected pixels;
otherwise defining data of a texture image in uncom-
pressed form, which data corresponds to the retrieved
subset of image data; and
assigning texture mapping data to the geometry data of
the substructure for mapping the defined texture
image onto the at least one geometric primitive of the
substructure,
wherein a compressed form of said image comprises the
geometry data, the texture mapping data and the texture
image data for each substructure.
10. The method of claim 9
determining whether the pixel values of the retrieved sub-
set are at least similar with respect to a distance in color
space, and
defining the data of the texture image in compressed form,
which has one selected pixel with a pixel value repre-
sentative of the similar pixel values of the retrieved
subset.
11. The method of claim 9
determining whether the pixel values of the retrieved sub-
set change in accordance with a color gradient within a
predefined variation range in color space, and
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defining the data of the texture image in compressed form,
the data of which has selected pixel with values repre-
sentative of initial gradient values and final gradient
values.

12. The method of claim 9, wherein said partitioning the
image domain into several substructures further comprises:

defining a set of vertices for the at least one geometric

primitive of each substructure,

wherein each vertex comprises an image coordinate defin-

ing a positioning within image space, wherein the image
coordinates form the geometry data,

wherein each vertex has further assigned a texture coordi-

nate, which defines a positioning within texture image
space, wherein the texture coordinates form the texture
mapping data.

13. The method of claim 9,

wherein the at least one geometric primitive defining the

substructure comprises two triangle primitives, wherein
said two triangle primitives are defined on the basis of
four image coordinates, wherein a texture mapping
coordinate is assigned to each of the image coordinates.
14. The method of claim 9,
wherein said substructure is rectangular, wherein said rect-
angular substructure is defined on the basis of two image
coordinates, wherein a texture mapping coordinate is
assigned to each of the image coordinates.

15. The method of claim 9, further comprising:

merging at least two substructures, which are adjacent to

each other and which have assigned texture images in
uncompressed form or which have assigned texture
images in compressed form, which are compatible with
respect to the texture mapping operation.

16. The method of claim 9,

wherein said image is a simply connected domain,

wherein each geometric primitive is a simply connected

domain,

wherein the domains of the geometric primitive are subdo-

mains of the image domain,

wherein the domains of the geometric primitives are dis-

connected,

wherein said totality of geometric primitives defines a sim-

ply connected domain corresponding to the image
domain.

17. A non-transitory, tangible computer-readable storage
medium having stored thereon a computer program for com-
pressing an image, the computer program comprising a set of
instructions, which, when executed on a processing system,
cause the processing system to perform the method compris-
ing:

providing data of an image;

providing at least one size dimension;

partitioning the image domain into several substructures

each having one of the at least one size dimension; and
defining at least one geometric primitive for each substruc-
ture on the basis of geometry data defining a positioning
of'the at least one geometric primitive within the image

24

space, wherein said at least one geometric primitive
represents geometrically the substructure,
wherein said method further comprises for each substruc-
ture:
5 retrieving a subset of data of the image corresponding to
the substructure;
determining whether pixels of the retrieved subset are
reconstructable from one or more selected pixels on
the basis of a texture mapping operation in the pixel
value space, wherein the selected pixels are represen-
tative of the subset of image data and input parameters
to the texture mapping operation in pixel value space;
if the pixels of the retrieved subset are reconstructable,
then defining data of a texture image in compressed
form with the selected pixels;
otherwise defining data of a texture image in uncom-
pressed form, which data corresponds to the retrieved
subset of image data; and
assigning texture mapping data to the geometry data of
the substructure for mapping the defined texture
image onto the at least one geometric primitive of the
substructure,
wherein a compressed form of said image comprises the
geometry data, the texture mapping data and the texture
image data for each substructure.
18. The non-transitory, tangible computer-readable storage
medium of claim 17, wherein the method further comprises:
determining whether the pixel values of the retrieved sub-
set are at least similar with respect to a distance in color
space, and
defining the data of the texture image in compressed form,
which has one selected pixel with a pixel value repre-
sentative of the similar pixel values of the retrieved
subset.
19. The non-transitory, tangible computer-readable storage
medium of claim 17, wherein the method further comprises:
determining whether the pixel values of the retrieved sub-
set change in accordance with a color gradient within a
predefined variation range in color space, and
defining the data of the texture image in compressed form,
the data of which has selected pixel with values repre-
sentative of initial gradient values and final gradient
values.
20. The non-transitory, tangible computer-readable storage
45 medium of claim 17, wherein said partitioning the image
domain into several substructures further comprises:
defining a set of vertices for the at least one geometric
primitive of each substructure,
wherein each vertex comprises an image coordinate defin-
ing a positioning within image space, wherein the image
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coordinates form the geometry data,
wherein each vertex has further assigned a texture coordi-
nate, which defines a positioning within texture image
space, wherein the texture coordinates form the texture
355 mapping data.



